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Abstract. We revisit the question of Zero-Knowledge PCPs, studied by
Kilian, Petrank, and Tardos (STOC ’97). A ZK-PCP is defined similarly
to a standard PCP, except that the view of any (possibly malicious)
verifier can be efficiently simulated up to a small statistical distance.
Kilian et al. obtained a ZK-PCP for NEXP in which the proof oracle is
in EXPNP. They also obtained a ZK-PCP for NP in which the proof
oracle is computable in polynomial-time, but this ZK-PCP is only zero-
knowledge against bounded-query verifiers who make at most an a priori
fixed polynomial number of queries. The existence of ZK-PCPs for NP
with efficient oracles and arbitrary polynomial-time malicious verifiers
was left open. This question is motivated by the recent line of work on
cryptography using tamper-proof hardware tokens: an efficient ZK-PCP
(for any language) is equivalent to a statistical zero-knowledge proof
using only a single stateless token sent to the verifier.

We obtain the following results regarding efficient ZK-PCPs:
Negative Result on Efficient ZK-PCPs. Assuming that the poly-

nomial time hierarchy does not collapse, we settle the above question
in the negative for ZK-PCPs in which the verifier is nonadaptive (i.e.
the queries only depend on the input and secret randomness but not
on the PCP answers).

Simplifying Bounded-Query ZK-PCPs. The bounded-query zero-
knowledge PCP of Kilian et al. starts from a weakly-sound bounded-
query ZK-PCP of Dwork et al. (CRYPTO ’92) and amplifies its
soundness by introducing and constructing a new primitive called
locking scheme — an unconditional oracle-based analogue of a com-
mitment scheme. We simplify the ZK-PCP of Kilian et al. by present-
ing an elementary new construction of locking schemes. Our locking
scheme is purely combinatorial.

Black-Box Sublinear ZK Arguments via ZK-PCPs. Kilian used
PCPs to construct sublinear-communication zero-knowledge argu-
ments for NP which make a non-black-box use of collision-resistant
hash functions (STOC ’92). We show that ZK-PCPs can be used
to get black-box variants of this result with improved round com-
plexity, as well as an unconditional zero-knowledge variant of Micali’s
non-interactive CS Proofs (FOCS ’94) in the Random Oracle Model.
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1 Introduction

The seminal work of Goldwasser, Micali, and Rackoff [30] changed the classical
notion of a mathematical proof by incorporating randomness and interaction.
This change was initially motivated by the intriguing possibility of zero knowl-
edge proofs – proofs that carry no extra knowledge other than being convinc-
ing. The result of Goldreich, Micali, and Wigderson [27] showed that any NP
statement can be proved in a zero-knowledge (ZK) manner, making ZK proofs a
central tool for cryptographic protocol design; this was later extended by Ben-Or
et al. [8] to any language in PSPACE. All these fundamental results, however,
relied on the assumption that one-way functions exist. Ostrovsky and Wigder-
son [46] showed that (similar) computational assumptions are indeed inherent
for non-trivial zero-knowledge.

Motivated by the goal of achieving unconditionally secure zero-knowledge
proofs for NP, Ben-Or, Goldwasser, Kilian and Wigderson [9] introduced the
model of multi-prover interactive proofs (MIP) and presented a perfect ZK pro-
tocol for any statement that is provable in the MIP model. Shortly after, Babai,
Fortnow, and Lund [6] showed that in fact any language in NEXP can be proved
in the MIP model. Fortnow, Rompel, and Sipser [23] studied the MIP model
further and observed that as a proof system it is equivalent to another model
in which an oracle encodes a probabilistically checkable proof (PCP) which is
queried by an efficient randomized verifier. (The PCP oracle is often identified
with the proof string defined by its truth-table, in which case the output domain
of the oracle is referred to as the PCP alphabet.) The difference between a prover
and a PCP oracle is that a prover can keep an internal state, and hence its answer
to a given question can depend on other questions. Therefore, soundness against
a PCP oracle is potentially easier to achieve than soundness against a malicious
prover. This line of work culminated in the celebrated PCP theorem [4, 3].

Zero-Knowledge PCPs. In this work we study zero-knowledge proofs in the PCP
model. A zero-knowledge PCP (ZK-PCP) is defined similarly to a standard
PCP, except that the view of any (possibly malicious) verifier can be efficiently
simulated up to a small statistical distance. It is instructive to note that zero-
knowledge PCPs are incomparable to traditional ZK proofs: since the PCP model
makes the prover less powerful, achieving soundness may become easier whereas
achieving zero-knowledge may become harder.

The original ZK protocol of [27] for NP implicitly relies on honest-verifier
zero-knowledge PCP for the NP-complete problem of 3-coloring of graphs. In
this PCP the prover takes any 3-coloring of the input graph, randomly permutes
the 3 colors, and writes down the colors as the PCP string. The verifier chooses
a random edge, reads the colors of the vertices of that edge, and accepts iff the
colors are different. This ZK-PCP has two disadvantages: (1) it is only zero-
knowledge against honest verifiers (a malicious verifier can learn whether the
colors of two non-adjacent nodes are identical), and (2) the soundness error is
very large: 1−1/m where m is the number of edges. Dwork et al. [19],4 relying on

4 This formulation of the result of [19] is due to [40].



the PCP theorem [3, 4], improved the ZK-PCP implicit in [27] in both directions.
Their construction implies a ZK-PCP for NP of polynomial length and with a
constant alphabet size such that: (1) the PCP is zero-knowledge against verifiers
who ask any pair of queries (but not more), and (2) the soundness error is
constant. However, the soundness error of this ZK-PCP could not be easily
reduced further while maintaining ZK against malicious verifiers. Furthermore,
it could not be made zero-knowledge against arbitrary polynomial-time verifiers,
simply because it has polynomial length and a malicious verifier could read the
entire proof string.

Kilian, Petrank, and Tardos [40] were the first to explicitly study the power
of ZK-PCPs with malicious verifiers. Their work shows how to get around the
above limitations, resulting in two kinds of ZK-PCPs with security against ma-
licious verifiers. For the case of languages in NP, [40] obtain a PCP of poly-
nomial length over a binary alphabet which is zero-knowledge with negligible
soundness error against malicious verifiers who are limited to ask only up to any
fixed polynomial p(|x|) number of queries, whereas the honest verifier only asks
polylog(|x|) queries to verify the PCP. (The length of the PCP string can be
polynomially larger than p(|x|).) We call such PCPs bounded-query ZK. For the
case of languages in NEXP, a scaled up version of this construction yields a
ZK-PCP in which honest verifiers are efficient (i.e. run in poly(|x|) time), but
soundness holds against arbitrary polynomial time verifiers. However, the PCP
oracle in this case cannot be computed in polynomial time even for languages in
NP. (By “computable in polynomial time” we mean that the oracle outputs a
polynomial-time computable function of its secret randomness, the input x, the
NP-witness, and the verifier’s query.) This is inherent to the approach of [40],
as it requires the entropy of the PCP oracle to be bigger than the number of
queries made by a malicious verifier.

The above state of affairs leaves open the following natural question.

Main Question: Are there efficiently computable PCPs for NP which
are statistically zero-knowledge against any polynomial-time verifier?

An additional motivation to study the question above comes from the recent
line of work on cryptography in an extended model of interaction with “tamper-
proof hardware tokens” [38, 44, 14, 29, 34, 41, 33]. This model allows the parties to
generate and exchange tamper-proof hardware tokens which are simply circuits
(with or without internal state) that are accessible only as a black-box. Indeed,
an efficient ZK-PCP for NP is equivalent to a statistical zero-knowledge proof for
NP in this model where the only message sent to the verifier is a single stateless
token. The stateless nature of the PCP oracle (inside the token) would make
such a protocol secure against “resetting attacks” [13]. With this motivation in
mind, we revisit the feasibility question of efficient ZK-PCPs for NP.

2 Our Results

Our main theorem provides a negative answer to the main question above for
the case of nonadaptive (honest) verifiers whose queries can only depend on



their randomness and the input x but not on the prover’s answers (so all the
queries can be prepared and asked in one round). This theorem may be viewed
as supporting the conjecture that efficient ZK-PCPs for NP do not exist.

In the setting of bounded-query ZK-PCPs, we revisit the construction of [40]
and simplify it considerably. Our contribution is to present a simple combina-
torial construction of a “locking schemes” which was the main tool developed
in [40] and used in both of their constructions for NP and NEXP.

Finally, motivated by a line of work on the power of black-box constructions
in cryptography, we show that efficient bounded-query ZK-PCPs can be used
to make the sublinear-communication zero-knowledge argument construction of
Kilian [39] black-box. Kilian’s construction assumes the existence of a collision-
resistant hash function, but it uses the hash function in a non-black-box way.
We also obtain constant-round variants of this result and an unconditional non-
interactive variant in the Random Oracle Model. In the following we describe
our results more formally and put them in the proper context

2.1 Efficient Nonadaptive ZK-PCPs

We prove the following negative result about the existence of ZK-PCPs for NP.

Theorem 1 (Main Theorem). If there exists an efficiently computable PCP
for NP with a nonadaptive honest verifier, constant soundness error, and zero-
knowledge against arbitrary polynomial-time verifiers, then the polynomial-time
hierarchy collapses.

What we prove is actually more general than the statement of Theorem 1.
Namely, we show that any language with an efficient ZK-PCP of polynomial
Shannon entropy (see Remark 4) and a nonadaptive verifier is in coAM, and
Theorem 1 follows by the result of [12]. Also, we only require the zero-knowledge
to hold also against nonadaptive verifiers (of arbitrary polynomial time).5

We emphasize that even though the zero-knowledge property of ZK-PCPs is
defined in a statistical fashion, our main theorem above does not follow from the
classical result of Fortnow, Aiello, and H̊astad [1, 22] who proved that SZK ⊆
AM ∩ coAM. The reason is that although achieving zero-knowledge in the
PCP model is harder, achieving soundness in this model is potentially easier.6

Therefore the languages which posses efficient ZK-PCPs (as far as we know) are
not necessarily included in SZK. Also recall that if one does not require the
PCP oracle to be efficiently computable, by the result of [40] all of the languages
in NEXP (including NP) do have (statistical) ZK-PCPs.

Using Theorem 1 itself, we can extend Theorem 1 to the case of adaptive
(honest) verifiers, as long as the total length of the prover’s answers returned in
an honest PCP verification is O(log n) bits (see Corollary 7).

5 The requirement that the honest verifier be nonadaptive is a restriction to our The-
orem 1, but only requiring the zero-knowledge to hold against nonadaptive verifiers
makes our result stronger.

6 The latter comparison manifests itself in the following characterizations: it holds
that PCP(poly, poly) = MIP = NEXP while IP = PSPACE ⊆ EXP.



Ideas and Tools. At a high level the proof of Theorem 1 uses ideas from many
previous influential works [26, 1, 20, 11] and tools from old and new results in
the context of constant-round proofs [31, 28, 36]. The main challenges are in how
to force an untrusted prover to extract a PCP oracle from the simulator and
run the honest verifier against this PCP. The soundness of this protocol follows
from the soundness of the original PCP. To get the completeness, we need to
extract this PCP in a way that it is “close” to an actual accepting PCP, and
this is where we use efficiency of the PCP and its bounded entropy. Section 3 is
dedicated to describing the main result formally and the main ideas behind it.
See the full version of the paper for a formal description of our AM protocol.

Motivation and Related Work A recent line of work in cryptography [38,
44, 14, 29, 34, 41, 33] studies the possibility of obtaining secure protocols in an
extended model of interaction in which the parties are allowed to exchange more
than just classical bits: the parties are allowed to locally construct a (stateful
or stateless) circuit, put it inside a tamper-proof token, and send it to another
party. The receiver of a token (in this model) is allowed only to use it as a
black-box. Namely, she is only allowed to give inputs to the token and receive
the output. (If the token is stateful, asking the same query twice might lead to
different answers.) Designing protocols in this model is made challenging by the
fact that a receiver of a token has no guarantee that the token is indeed well
formed. The work of Goyal et al. [34] showed that any two-party functionality
(e.g. zero-knowledge proof) can be carried out securely in this model without
relying on computational assumptions. Unfortunately the solution of [34] uses
stateful tokens, which makes it vulnerable to “resetting attacks”. Namely, there
is no security guarantee if a malicious party receiving a token can reset it to its
initial state, say, by cutting off its power.

In another line of research, Kalai and Raz [37] introduced the Interactive PCP
(IPCP) model which is a hybrid between the two-prover and the PCP models.
In the IPCP model the verifier interacts with a prover and a PCP oracle. Note
that when the prover and the PCP oracle are efficiently computable, the IPCP
model becomes a special case of the tamper-proof token model in which the
prover sends a stateless token (computing the PCP) to the verifier.

Although Kalai and Raz [37] introduced the IPCP model for the purpose of
optimizing the PCP length at the cost of small amount of interaction with the
prover, Goyal, Ishai, Mahmoody, and Sahai [33] showed that the IPCP model is
also interesting for cryptographic purposes in the context of achieving uncondi-
tional security in the tamper-proof token model. It was shown in [33] that uncon-
ditional (statistical) ZK proofs for NP exist in the IPCP model, and moreover
the prover and the PCP oracle can be implemented efficiently given a witness
w for x ∈ L. The verifier in the protocol of [33] exchanges only four messages
with the prover. A main question left open in [33] was whether there exists any
protocol that avoids such interaction between the verifier and the prover alto-
gether (i.e. the verifier only interacts with the PCP oracle). It is easy to see
that the latter question is equivalent to our main question above! Namely, any



positive answer to our main question implies a proof system in which all the
communication between the prover and the verifier consists of a single stateless
token sent to the verifier which hides the circuit computing the PCP oracle and
can convince the verifier about the truth of the input statement in a ZK manner.

Therefore, if efficient ZK-PCPs for NP exist, they would lead (without
any computational assumptions) to “noninteractive” statistical zero-knowledge
proofs for NP using tamper-proof hardware with the extra feature of being re-
sistant against resetting attacks, since the used token (which computes the PCP
oracle) is stateless.

2.2 Simplifying Bounded-Query ZK-PCPs

Our second contribution is a simplification of the ZK-PCP construction of Kilian
et al. [40]. The construction of [40] starts from the weakly-sound bounded-query
ZK-PCP of [19] and compiles it into a PCP which is zero-knowledge against
malicious verifiers of bounded query complexity. The weakly-sound PCP of [19]
is zero-knowledge against any k (possibly adaptive) queries, but suffers from
the soundness error 1 − 1/ poly(k). The main tool introduced and employed
in the compiler of [40] is called a “locking scheme”, which is an analogue of a
commitment scheme in the PCP model. In a locking scheme a sender holds a
secret w and randomly encodes it into an oracle σw that can be accessed by the
receiver R (denoted as Rσw). The efficient receiver should not be able to learn
any information about w through its oracle access to σw. On the other hand,
the sender can later send a key to the receiver to decommit the value w. The
protocol should guarantee that the sender is not able to change his mind about
the value w after constructing the oracle σw.7

Kilian et al. [40] gave an elegant way of using locking schemes to convert a
ZK-PCP with 1−1/ poly(k) soundness error into a standard ZK-PCP of constant
or even negligible error. Unfortunately, the locking scheme of [40] which forms the
main technical ingredient of their ZK-PCP constructions is quite complicated to
describe and analyze (pages 6 to 12 there) and uses ad-hoc algebraic techniques.

Motivation. Most applications of ZK-PCPs considered in this work either re-
quire the stronger unbounded variant (see Section 2.1) or alternatively can rely
on an honest-verifier variant (see Section 2.3), which is easier to realize. However,
efficient bounded-query ZK-PCPs with security against malicious verifiers can
also be motivated by natural application scenarios. For instance, one can con-
sider the goal of distributing an NP-witness among many servers in a way that
simultaneously supports a very efficient verification (corresponding to the work
of the honest verifier) and secrecy in the presence of a large number of collud-
ing servers (corresponding to the query bound of a malicious verifier). One can

7 In other words, a locking scheme can be thought of as a commitment scheme with
statistical security guarantees and minimal interaction such that during its commit-
ment phase the sender sends only a single tamper-proof token (containing the oracle
σw) to the receiver.



also consider a “time-lock zero-knowledge proof” in which a stateless hardware
token contains an embedded witness which can be very quickly validated but
requires a lot of time to extract. Another motivation behind our simpler locking
schemes comes from the line of work aiming at simplifying PCP constructions
and making them combinatorial. The main algebraic and technical components
in the final PCP construction of Kilian et al. [40] are (1) the PCP theorem of [3,
4] (which comes in through the construction of [19]) and (2) the locking scheme
of [40]. The first (more important) component was considerably simplified by
Dinur, and here we give a simplified version of the second component. (For a
more extensive survey of this line of research see [42] and the references therein.)

In the full version of this paper, we formally present and analyze a simple
combinatorial construction of a locking scheme which can be viewed as a nonin-
teractive implementation of Naor’s commitment scheme [45] in the PCP model.
In the following we describe the main idea.

Technique We start by reviewing Naor’s commitment scheme. In this commit-
ment scheme, the parties have access to a pseudorandom generator f : {0, 1}n 7→
{0, 1}3n and the protocol works as follows:

The receiver chooses a random “shift” r
$←{0, 1}3n and sends it to the sender.

The sender, who holds a secret input bit b, chooses a random seed s
$← {0, 1}n

and sends f(s) + b · r = t to the receiver (the addition and multiplication are
componentwise over the binary field). In the decommitment phase the sender
simply sends (b, s) to the receiver, and the receiver makes sure that f(s)+b·r = t
holds to accept the decommitted value.

The binding property holds because the support set of f is of size at most

|f({0, 1}n)| ≤ 2n, and a random shift r
$←{0, 1}3n with overwhelming probability

of at least 1− 2n · 2n · 2−3n = 1− 2−n will have the property that f({0, 1}n) ∩
(f({0, 1}n) + r) = ∅. Thus for such “good” r, by sending t to the receiver
the sender will be bound to at most one possible value of b (regardless of the
structure of the function f).

On the other hand, the hiding property of the scheme reduces in a black-box
way to the pseudorandomness of f(Un). Namely, if an efficient receiver R̂ can
distinguish between f(s) + r and f(s) + r · b, another efficient algorithm D who

uses R̂ internally is able to distinguish f(Un) from a random value U3n. Thus
it holds that if the function f is random, the scheme will be statistically hiding
against receivers who ask at most poly(n) oracle queries to f . The reason is that
a random function f mapping {0, 1}n to random values in {0, 1}3n is statistically
indistinguishable from a truly random function as long as the distinguisher is
bound to ask at most 2o(n) queries to f .

The above observation about the hiding property of Naor’s commitment
scheme means that if, in the second round of the commitment phase, the sender
chooses f to be a truly random function and sends f(s) + b · r to the receiver
as well as (providing oracle access to) f(·), then we get a secure (inefficient)
commitment scheme in the interactive PCP model without relying on any com-



putational assumption.8 In our construction of locking schemes we show how to
eliminate the first initial message r of the receiver and emulate the role of this
shift r by a few more queries asked by the receiver and more structure in the
locking oracle.

2.3 Black-Box Sublinear ZK Arguments

Kilian [39], relying on the PCP construction of [5],9 proved that assuming the
existence of exponentially-hard collision-resistant hash functions (CRH) and 2-
message statistically-hiding commitments, one can construct a (6-message) sta-
tistical ZK argument for NP with polylog(n) communication complexity (where
n is the input length). Later on, Damg̊ard et al. [17] showed that 2-message
statistically-hiding commitments can be obtained from any CRH, which made
the existence of exponentially hard CRH sufficient for the construction of Kilian.
Micali [43] showed how to make Kilian’s protocol noninteractive in the random
oracle model. The above constructions make a non-black-box use of the under-
lying collision-resistant hash function.

Our third contribution is to obtain black-box constructions of sublinear ZK
arguments for NP by using bounded-query efficient ZK-PCPs for NP. Namely,
we observe that the bounded-query ZK-PCP of [19] can be employed to get an
alternative to the ZK argument of Kilian [39] for NP which uses the underlying
CRH function as a black box. (Our protocols are in fact fully black-box [49], in
the sense that the security reduction makes a black-box use of the adversary,
and have black-box simulators.)

Theorem 2 (Black-Box Sublinear ZK Arguments). Let H be any family of
collision-resistant hash functions. Using H only as a black-box, one can construct
a constant-round ZK argument system for NP with negligible soundness error
and communication complexity sublinear in the witness size. Furthermore:
– For the case of an honest verifier, the zero knowledge is statistical, the round

complexity is 4 messages, and the protocol is public coin.
– For the case of malicious-verifier zero knowledge, the round complexity is 5

messages, and the proof of security requires that the family of CRH be secure
against non-uniform adversaries.

– If the family of CRH is secure against adversaries running in time 2n
Ω(1)

,
then the communication complexity can be made polylogarithmic in the wit-
ness size for both honest verifier and malicious verifier settings.

– In the random oracle model, there exists an unconditionally secure non-
interactive statistical zero knowledge argument system for NP with negligible
soundness error and polylogarithmic communication complexity.

We prove Theorem 2 in the full version; below we describe the main ideas.

8 Note that the random oracle f(·) is not efficiently computable. The work of [33]
presents an efficient construction of unconditionally secure commitments in the
IPCP model.

9 The more advanced PCP constructions of [3, 4] were not known at that time.



Motivation and Related Work. Our black-box construction of Theorem 2 is mo-
tivated by the recent line of work on studying the power of black-box crypto-
graphic constructions vs. that of non-black-box ones (e.g. [24, 18, 35, 15, 16, 48,
50, 32]). The goal in this line of work is to understand whether the non-black-
box application of an underlying primitive P which is used in a construction
of another (perhaps more complicated) primitive Q is necessary or a black-box
construction exists as well. The reason behind studying this question is that the
black-box constructions are generally much more efficient (since the source of
the non-black-box-ness usually is an extremely inefficient Cook-Levin reduction
to an NP-complete language). Moreover, black-box constructions are capable of
also incorporating any physical implementations of the employed primitive P in
the implementation of Q.

Technique Kilian’s argument system, when only required to be sound (and not
ZK), has only four messages and uses the hash function as a black-box. The first
three messages can be easily made ZK, and it is only the last message from the
prover which potentially carries some knowledge. In this last message, the prover
reveals some portions of the PCP. To retain the zero-knowledge property, Kilian
substitutes the last message (of his 4-message protocol) by a zero-knowledge
sub-protocol through which the prover convinces the verifier that he could have
revealed the correct portion of the PCP in a way that would cause the verifier
to accept. The latter zero-knowledge sub-protocol makes non-black box use of
the code of the hash function used in the protocol. Thus, our goal is to remove
the zero-knowledge sub-protocol performed at the end.10

In order to make Kilian’s 6-message ZK argument black-box, we need to
know more details about its first 3 rounds. The first message is simply the
description of the hash function sent to the prover. Then by using the given
hash function and applying a Merkel tree to the PCP the prover hashes down
the PCP into a short string which is sent to the verifier as a commitment to whole
PCP. With some care, one can make the hash value carry negligible information
about the PCP. The third message (from the verifier) consists of the indices of
symbols which the PCP verifier chooses to read from the PCP. The prover, in
the 4th message reveals the answers to the PCP queries by revealing the relevant
paths of the Merkel tree to the verifier. The committed hash value of the PCP
(the second message) together with the collision-resistance property of the hash
function prevent the prover from changing his mind about the PCP that he
committed to in the second message. Thus the soundness of the PCP implies
the soundness of the argument system. To keep the last message of this protocol
zero-knowledge, as we said, Kilian’s prover will not simply reveal the relevant
preimages, but instead would prove in a zero-knowledge manner, that he knows
a set of preimages that would make the PCP verifier accept.

10 Barak and Goldreich [7] also employ Kilian’s approach to get a 4-message universal
argument without zero-knowledge. Similarly to Kilian’s protocol, to make their pro-
tocol zero-knowledge (or just witness indistinguishable) [7] use the hash function in
a non-black-box way.



Our main intuitive observation is that if instead of using the PCP of [3, 4] one
feeds (a direct product version of) the the bounded-query ZK-PCP of [19] to the
construction of Kilian, then the prover can safely reveal the relevant preimages
in the last step of the basic 4-message argument of Kilian and this will not
hurt the zero-knowledge property. The key point is that although the employed
PCP is zero-knowledge only against bounded-query PCP verifiers, since we are
in the prover/verifier setting, the prover can control how many queries of the
PCP are read by the verifier, and therefore the bounded-query ZK property
of the used PCP will suffice for the argument system to be zero-knowledge.
Because our construction is black box, an unconditional result in the random
oracle model follows immediately. Since this construction based on collision-
resistant hash functions is black-box, it immediately implies an unconditional
construction of sublinear ZK arguments in the random oracle model. Using the
transformation of [21, 43] one can eliminate the interaction using the random
oracle and obtain an unconditional construction of sublinear ZK arguments for
NP in the random oracle model. To obtain the result for malicious verifiers
(and negligible soundness error), we apply a variant of the Goldreich-Kahan [25]
where both prover and verifier use statistically hiding commitments. See the full
version of the paper for a formal description of the protocol and its analysis.

Using NIZK? A possible alternative way to get a ZK argument (without using
ZK-PCPs) is to use noninteractive zero-knowledge (NIZK) proofs for NP [10].11

To do so, the prover and the verifier should perform a coin-tossing protocol along
with the first 3 messages of the basic variant of Kilian’s argument system, and
this will allow the prover to be able to send a noninteractive zero-knowledge
message to the verifier in his last message which proves to the verifier that the
prover knows the right preimages of the hash function. This approach benefits
from having only 4 messages exchanged, but it still uses the code of the hash
function in a non-black-box way, and moreover, one needs to assume the existence
of NIZK proofs for NP (in addition to the assumption that exponentially-hard
collision-resistant hash functions exist).

3 On Nonadaptive Efficient ZK-PCPs

In this section we give a formal statement of Theorem 1 and more details about
the intuition behind its proof. See the full version for a complete proof.

Definition 3. In a probabilistically checkable proof (PCP) Π = (P, V ) for a
language L, the prover P = {πx} is an (ensemble) of distributions over proof

oracles, V is an efficient verifier accessing a proof πx
$← πx, and the following

properties hold.
– Completeness: For every x ∈ L, it holds that Pr

π
$←πx

[V π(x) = 1] ≥ 2/3.

– Soundness: If x 6∈ L, then for every oracle π̂ we have Pr[V π̂(x) = 0] ≥ 2/3.

11 This variant was pointed out to us by Rafael Pass [47].



The verifier V is nonadaptive if the queries it asks only depend on its own
private randomness and the input x. (A nonadaptive verifier can prepare all
of its oracle queries in advance and ask them in one “round”.) For the case
where L ∈ NP, a PCP Π is called efficient if there is an NP-relation RL(x,w)
associated with L with the following efficiency property. Given any input x and
witness w such that (x,w) ∈ RL, one can efficiently sample a circuit computing

a PCP oracle πx
$← πx.12

Remark 4 (The Entropy of PCPs). For an input x ∈ L, the entropy of the PCP
oracle πx is defined similarly to the entropy of any random variable. Note that
for a fixed input x ∈ L (and witness w for x ∈ L, if the PCP is efficient), the
distribution of πx is determined by the prover’s private randomness. Since there
are at most 2poly(k) circuits of size k, any PCP oracle computable by circuits
of size at most k = poly(n) (regardless of whether these circuits are generated
efficiently or not) has entropy at most log(2poly(k)) ≤ poly(k) ≤ poly(n), simply
because any finite random variable x has Shannon entropy at most H(x) ≤
log |Supp(x)|.

Definition 5. Let Π = ({πx}, V ) be a PCP for the language L. Π is called
(statistical) zero-knowledge (ZK) if for every malicious poly(n)-time verifier

V̂ , there is an efficient simulator Sim which runs in (expected) poly(n)-time
and for a sequence of inputs x ∈ L the output of Sim(x) is neg(|x|)-close to

View〈πx, V̂ 〉(x).13 A simulator Sim is called straight-line if it uses V̂ only as a

black-box and moreover it just outputs the result of a single interaction with V̂ .
Namely, the simulator Sim interacts with V̂ without knowing its secret random-
ness rV̂ , and its output is distributed statistically close to the view of V̂ πx .

Theorem 1 directly follows from Remark 4 and Theorem 6 below.

Theorem 6. Let Π = ({πx}, V ) be a ZK-PCP for a language L with a non-
adaptive verifier V . If (for every fixed input x) the PCP oracle {πx} has entropy
at most poly(|x|), then L ∈ AM ∩ coAM. Moreover L ∈ BPP if the simulator
is straight-line.14

Corollary 7. Let Π = ({πx}, V ) be a ZK-PCP for a language L with oracle
entropy at most poly(n), and suppose the total length of the PCP answers re-
turned to the verifier during a single verification is at most O(log n) bits, then
(regardless of the adaptivity of the verifier), it holds that L ∈ AM ∩ coAM.
(Also L ∈ BPP if the simulator is straight-line.)

12 More formally, in that case we shall index the oracle distributions {πx,w} by both
the input and the witness. Then the completeness should hold for all x ∈ L when
the prover uses any witness w that x ∈ L.

13 In the case of efficient ZK-PCPs, the zero-knowledge property should hold regardless
of which witness w (for x ∈ L) is used by the prover to generate the oracle.

14 Bounded-query ZK-PCPs of [40] and its predecessors [27, 19] all have straight-line
simulators.



Note that in Corollary 7 there is no bound on the length of the queries of the
verifier, and particularly it can be applied to cases that the number of queries
of V is O(log n) and the PCP answers (alphabet) are of constant size while the
length of the PCP is exponential 2poly(n) (which makes the length of the queries
of the verifier at least poly(n)).

Proof (Proof of Corollary 7). Since the total length of oracle answers is O(log n)
bits, we can modify the verifier V into another equivalent verifier V ′ as follows:
the new verifier V ′ tries to ask a superset of the queries that V would ask, but
V ′ asks its queries in a nonadaptive way. In particular V ′ enumerates all the
possible answers that V might get from the oracle, continues the verification in
each case, and prepares all the possible V queries at the beginning. There are
at most 2O(logn) = poly(n) many possibilities caused by different PCP answers
in a verification, thus there will be at most poly(n) many queries asked by V ′.
After getting the answers, V ′ can emulate V internally and decide as V would.
The completeness, soundness, and zero-knowledge of V ′ are inherited from those
of V by definition.

3.1 Main Ideas and Framework

Here we describe the main ideas behind the proof of Theorem 6. Our AM
protocols for L and L follow the same general framework. (The AM protocol
for L is the more interesting case, since it implies the collapse of the hierarchy
in case L is NP.)

First we show that if a bounded-entropy ZK-PCP for L has a straight-line
simulator, then L (and L) can be decided by an efficient BPP algorithm DL.
At a very high level, this step uses ideas from [26] by looking at a particular
malicious verifier (in our case a repeated version of the honest verifier) and using
its interaction with the straight-line simulator to decide the language. Since the
key ideas already appear in the case of straight-line simulation, in Section 3.2
below we start by only describing this basic case.

Beyond Straight-Line Simulation. For the case of general (statistical)
simulation, we show how to emulate the efficient algorithm DL above with the
help of an untrusted prover. In particular, we first show how to emulate DL

with the help of some advice αx sampled from a specific distribution15, and then
we will show how to get this advice αx from an (untrusted) prover through a
constant round protocol GetAdv. The latter protocols are implemented following
similar frameworks introduced by Feigenbaum and Fortnow [20] (and extended
in the followup works of [11, 2]) in the context of studying the possibility of
worst-case to average-case reductions for NP. Our protocol, however, is more
complicated and uses recent and old sampling protocols from [31, 28, 36].

15 Here we are using the term “advice” in a nonstandard way, because the advice
distribution αx depends on the input x (rather than only depending on the input
length |x|).



3.2 The Case of Straight-Line Simulation

In this section we present the BPP algorithm for L assuming that the ZK-PCP
has a perfect straight-line simulator. This special case already captures the main
ideas, and we refer the reader to the full version for the general case.

Since the PCP verifier V is assumed to be nonadaptive, we can assume w.l.o.g.
that V permutes its queries a1, . . . , aq randomly before querying the oracle.

The Intuition. The general framework is to use the simulator Sim to find a “good
enough” oracle ϕ and run a fresh instance of the verifier V against this oracle.
This way, the correctness of our algorithm to decide membership in L follows
from the soundness of the original PCP system. The challenge is to sample
the oracle ϕ in a way that makes the verifier accept in case the input x is in
L. Suppose we run the simulator over the “mildly malicious” verifier who only
repeats several (independent) executions of the verifier: (V 1, . . . , V k). Then, in
case x ∈ L, the simulated transcript of all of these executions (V 1, . . . , V k)
will be accepted. To define the oracle ϕ, relying on the straight-line nature
of the simulator, we can fix any simulated partial transcript for (V 1, . . . , V i)
(for i ∈ [k]) and ask Sim to answer any new query only conditioned on the
simulated transcript of (V 1, . . . , V i). (Even though ϕ is a randomized oracle, its
randomness can be fixed independently of the final verification that is executed
over ϕ.) The main intuition is that since the entropy of the simulated transcript
for (V 1, . . . , V k) is bounded, for most of i ∈ [k] the simulated transcript of V i

has very small entropy, and relying on the non-adaptivity of V , all of its queries
could be thought of as the “first query”, and this way the oracle ϕ (defined
above) behaves very close to the actual “oracle” of the simulated transcript of
V i which leads to an accept. The formal argument follows.

Notation. Let V [k] be an execution of k independent copies of the PCP verifier
V . By V i we refer to the i-th execution of V in V [k] (i.e. V [i] = (V 1, . . . , V i)).
V [k] is a potentially malicious verifier whose view View〈πx, V [k]〉 is assumed to
be perfectly simulated by the straight-line simulator Sim (when given access to
V [k]). The view View〈πx, V [k]〉 is composed of k random seeds r1, . . . , rk for V
and k transcripts τ1, . . . , τk such that each τ i = (ai1, b

i
1, . . . , a

i
q, b

i
q) is a partial

transcript where {ai1, . . . , aiq} are the queries asked by V using the randomness ri

and bij = πx(aij) is (supposedly) a corresponding returned oracle answer. We will

only use the fact that Sim simulates (τ1, . . . , τk) correctly and will ignore the fact
that this is simulated jointly with random seeds (r1, . . . , rk). Also since we will
use Sim only over V [k] and some input x, for simplicity in the following we will
use Sim to denote Sim(V [k], x). Also, let m = poly(n) ≥ H(πy) be the upper
bound on the PCP entropy for every y ∈ L ∩ {0, 1}n, and let ε = 1/ poly(n)
be a parameter controlling the error of the BPP algorithm DL. The formal
description of the algorithm DL is as follows.

Construction 8. BPP Algorithm DL. Set k = m · ( 3q
ε )2 where q is the query

complexity of V and ε is the error parameter.



1. Randomly choose i
$← [k], and use Sim to generate (τ1, . . . , τ i−1) as prefix of

View〈πx, V [i−1]〉.
2. Choose a fresh randomness ri for the verifier V and generate the queries

ai1, . . . , a
i
q using ri.

3. Using the simulator Sim answer each of the queries aij as follows to get
the answer bj. We extend the execution of the straight-line simulator Sim
assuming that aij is the first query of V i conditioned on (τ1, . . . , τ i−1) being

generated already for (V 1, . . . , V i−1).
4. Finally output whatever V decides over the view (ri, ai1, b1, . . . , a

i
q, bq).

Lemma 9. If Π has soundness 1 − δs, then DL will reject every x 6∈ L with
probability ≥ 1− δs, and if Π has completeness 1− δc, then DL will accept every
x ∈ L with probability ≥ 1− (δc + ε).

Proof (Proof of Lemma 9). We study the cases x ∈ L and x ∈ L separately.

When x ∈ L. The final verification of the algorithm of Construction 8 is
run against a randomized oracle, but this oracle can be sampled and fixed
independently of the randomness of the verifier, thus the soundness of the
PCP implies the soundness of DL. More formally, define the randomized or-
acle ϕi = (πx | τ1, . . . , τ i−1) according to the distribution of the PCP oracle πx
conditioned on the view of V [i−1]. Define the oracle ϕ̂i as a randomized oracle

that for every new query a it samples a fresh instance of the oracle ϕ
$← ϕi

and then answers a using ϕ. Based on Construction 8 DL is indeed running the
verifier V against an instance of the oracle ϕ̂ ← ϕ̂i and outputs V ϕ̂(x) . Thus,
since x 6∈ L, by the soundness of V , with probability at least 1 − δs it holds
that V ϕ̂(x) = 0. Note that if instead of asking all of the queries of the verifier
“as the first query” we simply ask the simulator to simulate the whole view, the
answers might not be chosen according to any fixed oracle independently of the
randomness of V , and V might accept even though x ∈ L.

When x ∈ L. Informally speaking, the verifier accepts in this case for the follow-
ing two reasons: (1) If we sample the view of the final verification simply as the
view of V i as an extension of V [i−1] all sampled by the simulator Sim (i.e. using
the oracle ϕi rather than ϕ̂i), then it will be an accepted view by the definition
of the simulator, moreover (2) since the verifier is nonadaptive and permutes its
answers, any of its queries can be thought of as the first query. More formally,
consider the following two mental experiments:

1. Sample (τ1, . . . , τ i−1) and ϕ
$← ϕi (as defined above) and sample ai1, . . . , a

i
q

(by sampling ri). Then execute q versions of the verifier V as follows. In the
j’th execution ask the queries from ϕ in this order: (aij , . . . , a

i
q, a

i
1, . . . , a

i
j−1)

and receive the answers (bij , . . . , b
i
q, b

i
1, . . . , b

i
j−1).

2. Do the same as above, but here in the j’th execution first sample a fresh ora-

cle ϕj
$←ϕi and then ask the queries in the order (aij , a

i
j+1, . . . , a

i
q, a

i
1, . . . , a

i
j−1)

to get the answers (cj1, . . . , c
j
q).



Claim. Let α = m/k. Then for every j ∈ [q], it holds that Pr[bij = cj1] ≥ 1−3
√
α.

Now we prove Claim 3.2. A crucial point is that the queries of V are al-
ready permuted randomly, and therefore rotations inside each execution will
still produce a random execution of V (although these random executions are
correlated). Therefore by symmetry, it would suffice to prove Claim 3.2 only for
the first execution of the two experiments. Since H(πx) ≤ m and that aij ’s are
sampled independently of πx, therefore:

m ≥ H(πx) ≥
∑
i∈[k]

∑
j∈[q]

H(bij | a1
1,b

1
1, . . . ,a

i
j) ≥

∑
i∈[k]

H(bi1 | τ 1, . . . , τ i−1,ai1).

By averaging over i and using the definition of the conditional entropy it
holds that:
E
i

$←[k],τ1,...,τ i−1,ai1
H(bi1 | τ 1, . . . , τ i−1,ai1) ≤ m/k = α. By another averag-

ing argument, with probability at least 1 −
√
α over sampling and fixing (i

$←
[k], τ1, . . . , τ i−1, ai1), it would hold that H(bi1 | τ1, . . . , τ i−1, ai1) ≤

√
α. We use

the following lemma to bound the collision probability when the Shannon en-
tropy is small.

Lemma 10. For every finite random variable x it holds that Pr
x1

$←x,x2
$←x

[x1 =

x2] ≥ 1− 1.45H(x).

Proof. Let C = Pr
x1

$←x,x2
$←x

[x1 = x2] be the collision probability of x, let pi =

Pr[x = i], and let H = H(x). By Jensen’s inequality:
∑
i pi log pi ≤ log

∑
i p

2
i

it holds that H ≥ log 1/C (where log 1/C is also known as the Renyi entropy).
Therefore using e−x ≥ 1 − x we conclude that: C ≥ 2−H = e(− ln 2)·H ≥ 1 −
(ln 2) ·H > 1− 1.45H.

By Lemma 10, the bounded entropy of H(bi1 | τ1, . . . , τ i−1, ai1) ≤
√
α implies

that its collision probability is at least 1 − 2
√
α and since c11 and bi1 are both

sampled from (bi1 | τ1, . . . , τ i−1, ai1), we have Pr[c11 = bi1] ≥ 1− 2
√
α. Claim 3.2

now follows by a union bound.

Claim 3.2 implies that the sampled (ri, ai1, b1, . . . , a
i
q, bq) in the algorithm

DL (which is the same as using the first query/answer pairs of executions in the
second experiment) will also lead to accepting with probability at least 1− δc −
3q
√
α = 1− (δc + ε).
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